Fiche 2

Écrans de protection

RAYONNEMENTS ALPHA α

Sans objet car leur pénétration est faible.

RAYONNEMENTS BÊTA β

Choisir de préférence des matériaux de numéro atomique faible pour éviter le rayonnement de freinage.

Une épaisseur de 10 mm de plexiglas suffit à arrêter tous les bêta d'énergie inférieure à 2 MeV.

RAYONNEMENTS GAMMA γ

Pas de notion de parcours maximal (contrairement aux particules chargées) : donc, derrière un écran, il subsiste toujours une fraction de la composante initiale. Les écrans doivent être constitués de matériaux denses, à numéro atomique élevé, comme le fer, le plomb ou l'uranium (appauvri en ²³⁵U).

La loi simplifiée d'atténuation s'écrit :

$$\Phi_x = \Phi_0$$
 . $e^{-\mu x}$

 Φ_{\downarrow} = fluence des photons après la traversée de l'écran d'épaisseur x

 Φ_0 = fluence initiale des photons avant l'écran

μ = coefficient massique total d'atténuation en cm⁻¹ (il caractérise les différents types d'effets d'interaction des photons dans la matière)

X = épaisseur de l'écran en cm

Valeurs du coefficient µ pour le plomb

E (MeV)	0,1	0,2	0,5	0,7	1	2
μ (cm ⁻¹)	60	9,5	1,8	1,2	0,8	0,52

Le rapport $\Phi_{\rm x}/\Phi_{\rm o}$, appelé facteur de transmission, est < 1. Inversement, le rapport $\Phi_{\rm o}/\Phi_{\rm x}$, appelé facteur d'atténuation, est > 1.

Les épaisseurs caractéristiques apportent un facteur d'atténuation de 2 (soit un facteur de transmission = 1/2) ou de 10 (facteur de transmission = 1/10).

Elles sont encore appelées « épaisseur moitié » $(X_{1/2})$ et « épaisseur dixième » $(X_{1/10})$. La valeur de l'épaisseur 1/2 est égale à 0,3 fois celle de l'épaisseur 1/10 : $X_{1/2} = 0,3 X_{1/10}$

	$\mathbf{X}_{_{1/2}}$		X _{1/10}	
Radionucléide	Béton	Plomb	Béton	Plomb
Cobalt 60	84	11,5	280	38
Césium 137	66	6	220	20
Iridium 192	54	3.5	180	11

Valeurs d'épaisseurs moitié et dixième en mm

Fiche 2

Écrans de protection

EXEMPLE:

Si $X_{1/10}$ = 20 mm, un facteur d'atténuation de 800 peut être obtenu en associant 3 épaisseurs moitié (2 x 2 x 2 = 8) et deux épaisseurs dixième (10 x 10 = 100). Soit :

 $3(0,3 \times 20) + 2 \times 20 = 58 \text{ mm}$

POUR LES NEUTRONS

La loi générale s'écrit : $\Phi_x = \Phi_0 \times e^{-\sum x}$ où \sum représente le coefficient total d'absorption et de diffusion en cm.

Pour ralentir les neutrons, choisir de préférence des matériaux hydrogénés : eau, paraffine, polyéthylène, béton...

Une fois ralentis (ils sont dits thermiques), on peut interposer des matériaux neutrophages qui capturent les neutrons. Dans certains cas, il faut noter que cette réaction peut produire un rayon γ très énergétique. Par exemple, avec le cadmium, l'énergie du gamma est de 7 MeV.

Préférer le ¹⁰B qui donne un α peu pénétrant.

Matériau	Masse volumique (g . cm²)	Épaisseur dixième (cm)	
Eau	1	23	
Graphite	1,62	21	
Béton	2,3	23,2	
Fer	7,8	14,3	

Épaisseur dixième pour quelques matériaux usuels - neutrons rapides

Matériau	∑ (cm ⁻¹)		
Eau	0,1		
Graphite	0,11		
Béton	0,099		
Fer	0,16		

Valeurs de ∑ – Neutrons rapides